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Abstract
1.	 Numerous interactions between plants and animals vary in their outcome between 
antagonism and mutualism. Interactions between plants and scatter‐hoarding 
animals provide a prime example of this phenomenon. Scatterhoarders consume 
large quantities of seeds (potentially reducing plant establishment), yet also dis-
perse seeds and bury them in shallow caches (potentially improving recruitment). 
Despite intense work on mechanisms that cause these interactions to shift along 
an antagonism–mutualism continuum, it remains difficult to quantify their final 
outcomes.

2.	 We demonstrate how readily available field data can be used to reach this goal, 
with interactions between rodents and two oaks species (sessile oak Quercus pet-
raea, and red oak Q. rubra) as an empirical example. Our approach consists of quan-
tifying the net outcome of the interaction through collecting data on different 
vital rates (e.g. probability that cached seeds survive to germination, probability 
of seedling recruitment with and without rodents; near and far from conspecific 
trees; with and without seed pilferage) and assembling them in a simple math-
ematical model.

3.	 We found that during the period of the study, interactions between scatter‐hoard-
ing rodents and both focal oaks were antagonistic. Even though caching increased 
the likelihood of seedling establishment, this effect was not strong enough to 
compensate for the costs of seed predation. Furthermore, there was no evidence 
that the short‐distance transportation that is usually provided by small mammals 
benefited early oak recruitment.

4.	 Synthesis. Our empirical results demonstrated that certain common assumptions 
– that caching by rodents invariably benefits plant recruitment; that improved 
seedling establishment after seed burial is sufficient to make plant–scatterhoarder 
interactions mutualistic; that transportation away from maternal plants is highly 
beneficial—do not always hold and should be tested rather than taken for granted.
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1  | INTRODUCTION

Numerous interactions between plants and animals vary in their out-
come between antagonism and mutualism (Bronstein, 1994; Palmer 
et al., 2010). Interactions between plants and scatter‐hoarding ani-
mals, such as rodents or corvids, are a prime example of this phenom-
enon because scatterhoarders play a dual role in plant regeneration. 
On the one hand, they consume large quantities of seeds and re-
duce plant establishment (Howe & Brown, 2001; Larios, Pearson, 
& Maron, 2017; Zwolak, Pearson, Ortega, & Crone, 2010). On the 
other hand, they disperse seeds and bury them in shallow caches, 
which for some plant species provides the only means of successful 
recruitment (Asquith, Terborgh, Arnold, & Riveros, 1999; Muñoz & 
Bonal, 2011; Pesendorfer, Sillett, Koenig, & Morrison, 2016; Vander 
Wall, 1992). Scatterhoarding is evolutionarily favoured (otherwise, 
it would not be such a common strategy of seed dispersal: Gómez, 
Schupp, & Jordano, 2019), but ecologically it can have negative 
net impacts on plants (Zwolak & Crone, 2012). This disagreement 
between ecological and evolutionary perspectives deserves reso-
lution. The most promising way to address this dilemma is to under-
stand the mechanisms that determine when scatterhoarding is and 
is not favourable.

Whether seed dispersal and caching by granivores are ben-
eficial or detrimental for plant populations depends on whether 
recruitment with granivores is greater or less than recruitment 
without granivores (Jansen & Forget, 2001; Longland, Jenkins, 
Vander Wall, Veech, & Pyare, 2001; Schupp, Jordano, & Gómez, 
2010; Theimer, 2005; Zwolak & Crone, 2012). This principle is sim-
ple, but evaluating it in the field is challenging. One approach is to 
build up the net outcome from separately measured components 
(Zwolak & Crone, 2012). This kind of approach is similar to pre-
dicting population dynamics from separately measured vital rates 
(e.g. Morris & Doak, 2002) but has been used less often to eval-
uate species interactions. Intuitively, when the benefits provided 
by seed dispersal are high, plants can bear higher costs in the form 
of seed consumption. Following on this notion, the benefits of 
scatterhoarding outweigh the costs of seed predation when the 
probability of caching and not retrieving cached seeds exceeds the 
ratio of seedling emergence from surface to seedling emergence 
from caches.

To briefly review our past use of this approach (Zwolak & Crone, 
2012), we started from the premise that granivores are beneficial 
when plant recruitment in the presence of granivores is greater than 
plant recruitment in the absence of granivores. This inequality is 
written in mathematical terms as follows:

where eS is the seedling emergence from surface, pH is the propor-
tion of seeds harvested by granivores, pC is the probability that seeds 
will be cached and left uneaten, and eC is the seedling emergence 
from caches. In studies of plant–granivore interactions, it is much 
easier and more common to measure the seedling emergence rates 

(eS and eC) than the caching rates (pH and pC; see Zwolak & Crone, 
2012). Therefore, to compare the role of granivores across studies, 
Zwolak and Crone (2012) rearranged the equation to calculate the 
minimum value of pC that would be necessary for granivores to in-
crease plant recruitment:

Thus, granivores help plant recruitment when the proportion of 
buried and uneaten seeds exceeds a threshold value (hereafter p̃C, 
after Zwolak & Crone, 2012, to distinguish it from empirical pC val-
ues) determined by the seedling emergence ratio, that is, the bene-
fits of seed burial.

Scatterhoarders not only bury the seeds in the topsoil but also 
move them away from the parent plant. This behaviour also mod-
ifies recruitment probability, with effects that are usually thought 
to be positive, due to colonization of ephemeral microsites or es-
cape from distance‐  and density‐dependent mortality (‘Janzen‐
Conell effect’; Comita, Muller‐Landau, Aguilar, & Hubbell, 2010; 
Fricke, Tewksbury, & Rogers, 2014; Jansen, Bongers, & Van Der 
Meer, 2008; Johnson, Beaulieu, Bever, & Clay, 2012). However, 
the effects can also be negative, for example, when habitat quality 
is autocorrelated, it often declines with distance from maternal 
plants (Condit, Engelbrecht, Pino, Perez, & Turner, 2013; John et 
al., 2007). Furthermore, distance to the seed source may alter ro-
dent foraging activity and seed predation rates through changes in 
local seed availability (Gálvez, Kranstauber, Kays, & Jansen, 2009; 
Stapanian & Smith, 1984). Nonetheless, even though factors shap-
ing dispersal distance by scatterhoarders, especially by rodents, 
are extensively studied (Jansen, Bongers, & Hemerik, 2004; Lichti, 
Steele, & Swihart, 2017; Moore, McEuen, Swihart, Contreras, & 
Steele, 2007; Sunyer, Espelta, Bonal, & Muñoz, 2014; Xiao, Zhang, 
& Wang, 2005), the actual influence of dispersal distance on re-
cruitment probability is seldom quantified. The intertwined bene-
fits of burial and transportation constrain our ability to understand 
mechanisms that drive the ecological interactions between plants 
and scatterhoarders.

Here, we use empirical data to illustrate an approach for 
separating benefits of burial and benefits of transportation by 
scatterhoarders on plant recruitment (note that we do not ad-
dress here the benefits of seed transport that do not translate 
into increased recruitment, such as providing gene flow: Gelmi‐
Candusso, Heymann, & Heer, 2017). We used two oak species as 
a model system: sessile oak (Quercus petraea) and northern red 
oak (Quercus rubra). Quercus petraea is the dominant native oak 
in Central European forests. Q. rubra was introduced to European 
forests from North America in the 17th century as an ornamental 
species (Bogdziewicz et al., 2018; Woziwoda, Kopec, & Witkowski, 
1998; Woziwoda, Potocki, et al., 2014). For both oaks, the primary 
means of reproduction is thought to be abandonment of seed 
caches made by scatter‐hoarding rodents and birds (den Ouden, 
Jansen, & Smit, 2005; Kurek, Dobrowolska, & Wiatrowska, 2019; 

(1)eS<pHpCeC+ (1−pH)eS

(2)pc>
es

ec
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Myczko, Dylewski, Zduniak, Sparks, & Tryjanowski, 2014; Steele, 
2008). Nonetheless, whether benefits of burial and transporta-
tion exceed the costs imposed by seed predation has never been 
experimentally evaluated (and in fact, experimental approaches 
are rarely used to address this issue in scatter‐hoarding systems). 
We conduct this evaluation using the estimates of caching prob-
ability, probability of seed survival in the caches, and seedling 
establishment probability obtained in field experiments and the 
modelling framework developed by Zwolak and Crone (2012) to 
place the focal interactions at the antagonism–mutualism con-
tinuum. However, the original model did not include the poten-
tial changes in caching benefits driven by seed pilferage (Steele 
et al., 2013; Sunyer, Boixadera, Muñoz, Bonal, & Espelta, 2015; 
Zwolak, Bogdziewicz, Wróbel, & Crone, 2016). Therefore, as part 
of this paper, we extend the logic of the p̃C calculation to include 
pilferage.

2  | MATERIALS AND METHODS

2.1 | Study site and experimental design

We established four study sites in Q. petrea–Q. rubra mixed forests 
in Drawieńska Forest (longitude: 52.931, latitude: 15.988), western 
Poland. The sites were spaced 1–15 km from each other. This area is 
located in the temperate climate zone, with average annual precipi-
tation of 592 mm and mean monthly temperature ranging from 17°C 
in July to −2°C in January. These mixed forests are comprised almost 
exclusively of the two oak species (Q. petraea and Q. rubra), with oc-
casional individuals of Q. robur, Carpinus betulus and Fagus sylvatica. 
The understory is poorly developed, with some patches of Rubus sp. 
and Urtica dioica, and seedlings of oaks and beech. Oak acorns are 
relatively large (average mass; Q. petraea 1.26 g., Q. rubra: 2.85 g.) 
and are readily dispersed and eaten by small mammals (Bogdziewicz, 
Lichti, & Zwolak, 2019; den Ouden et al., 2005). As revealed by 
camera traps, small mammals at our study sites were dominated by 
Apodemus sp., most likely A. flavicollis, a seed specialist (Gasperini, 
Bonacchi, Bartolommei, Manzo, & Cozzolino, 2017; Selva, Hobson, 
Cortés‐Avizanda, Zalewski, & Donázar, 2012).

To quantify effects of acorn burial on seedling emergence, we con-
ducted seed addition experiments. We fully crossed three treatments: 
rodent exclusion/rodent access, seed buried/seed sown on surface 
and distance from the adult plant. To do so, we randomly chose 12 
Q. petraea trees (3 per site) and 12 Q. rubra trees (3 per site). We added 
acorns of the focal species in 20 × 20 × 20 cm wire mesh cages (five 
acorns per cage). Cages were buried ~5 cm into the ground in sets of 
four. In half of the cages we buried acorns 1–2 cm into the ground and 
in the other half we placed acorns at the top of the litter layer and 
covered them with leaves to mimic autumn leaf fall. This treatment 
(burial/sowing on surface) was crossed with rodent exclusion: in half of 
the cages, we cut 8 × 8 cm holes to allow rodent access; the other half 
remained closed to exclude rodent foraging. A comparison of seed-
ling recruitment from acorns that were buried versus placed on sur-
face allowed us to estimate burial‐dependent benefits of rodent seed 

dispersal. Rodent exclusion allowed us to estimate seed pilferage by 
comparing recruitment of buried acorns in open versus closed cages.

To address the benefits of seed transportation, the above‐de-
scribed cage sets were placed along transects. Under each tree, we 
established a transect along one cardinal direction, aiming to maxi-
mize the distance of the transect to other conspecifics. This was done 
assuming that rodents tend to carry and cache seeds towards areas of 
lower conspecific seed density (Hirsch, Kays, Pereira, & Jansen, 2012; 
Stapanian & Smith, 1984; Steele et al., 2013; Yang, Zhang, & Yi, 2016). 
Thus, our estimates of transportation benefits may be overly positive, 
if such directed dispersal does not occur in our system. We placed 
five sets of cages at each transect. We used tree crown as a reference 
point and buried one set of cages directly underneath the crown bor-
der, another set 5 m towards the tree trunk (underneath the crown), 
and the remaining three sets every 5 m in the opposite direction. We 
used 25 m as the maximum evaluated distance because acorn‐track-
ing experiments report that the vast majority of acorns transported 
by rodents are cached within that radius (Bogdziewicz, Crone, Steele, 
& Zwolak, 2017; den Ouden et al., 2005; Muñoz & Bonal, 2011; Xiao 
et al., 2005). This includes our preliminary tracking studies at the 
same forest, where the mean dispersal distance by rodents for both 
focal oaks is <3 m. We set up experimental cages in October 2016 
and quantified seedling establishment in August 2017. Seeds for the 
experiment were locally collected. The overall sample size equalled 
2,400 acorns (480 seedling cages).

2.2 | Statistical analysis

To test how acorn burial, distance from the tree and rodent foraging af-
fect seedling establishment, we built a separate generalized linear mixed 
model (GLMM) for each oak species. We used nested random effects of 
cage set, tree, study site, logit link and binomial family error distribution, 
and implemented the models via lme4 package in r (Bates, Maechler, 
Bolker, & Walker, 2015). In each model, we used proportion of estab-
lished seedlings as the response variable, and burial (surface vs. sowed), 
rodent access (excluded vs. allowed) and distance from the tree as fixed 
effects. We also included all possible two‐way interaction terms be-
tween fixed effects, and the three‐way interaction (which was removed 
when non‐significant). We calculated marginal (i.e. the proportion of 
variance explained by fixed effects) and conditional (i.e. the proportion 
of variance explained by fixed and random effects) R2 for GLMMs using 
the ‘MuMIn’ package (Bartoń, 2016; Nakagawa & Schielzeth, 2013).

2.3 | Calculating the p̃C threshold and the effects of 
seed pilferage

We evaluated how the interactions between rodents and oaks 
are placed along the antagonism–mutualism continuum (Zwolak & 
Crone, 2012). The p̃C threshold was calculated as a ratio of emer-
gence from seeds sown on surface versus emergence from buried 
seeds, both with rodents excluded. Seed pilferage was gauged as 
the ratio of seedling recruitment from buried seeds in open versus 
closed cages. Implicitly, the original definition of the proportion of 
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seeds buried and uneaten (pc) combined three processes (Zwolak & 
Crone, 2012): the probability that a seed is buried, the probability it 
is eaten by the cache owner and the probability it is pilfered:

where pcached is the probability a seed is buried by a rodent, peaten 
by cache owner is the probability of retrieval by individuals re-
sponsible for seed burial and ppilfered is the probability of retrieval 
by pilferers. The p̃C threshold is the minimum value of pc when 
the benefits for plants balance the costs of seed consumption. 
Thus, if the threshold is determined by the proportion of seedling 
emergence from surface‐placed acorns, es (estimated with data on 
seedling emergence from seeds sown on surface in closed cages) 
to emergence from caches, ec (i.e. by benefits of burial, estimated 
with data on seedling emergence from seeds buried in closed 
cages), that is,

then the equation can be expanded to show the effects of 
pilferage:

and rearranged to include only the unknown proportion of seeds 
buried and uneaten by the cache owner:

In the above equation, p̃CO is the minimum beneficial proportion 
of seeds buried and uneaten by the cache owner, and all other param-
eters are as defined above. In other words, the p̃CO threshold defines 
the burial benefits while taking into account cache pilferage by other 
granivores in the community. The pilfered seeds can be consumed 
or re‐cached and possibly pilfered again (Jansen et al., 2012; Vander 
Wall & Joyner, 1998); thus, our model does not assume that their 
survival rate is 0, but that a constant fraction is consumed after pil-
ferage (see Online Supplement).

Confidence intervals for these parameters (es, ec and p̃C) were 
obtained with parametric bootstrapping, that is, sampling from the 
distributions defined by the mean and standard error of each coef-
ficient to obtain a joint distribution for the derived variables. We 
repeated the calculations of p̃C and p̃CO for both near the conspecific 
probability of seedling establishment, that is, seedling establishment 
rate estimated at 0 m distance, and far at 25m distance. Estimated 
probabilities of establishment were derived from the above‐de-
scribed GLMMs.

The empirical pCO value (the ultimate probability that an acorn will 
be cached and not retrieved, accounting for retrieval by the entire 
granivore community) for both oak species was derived from a parallel 
study investigating rodent seed dispersal of the focal oaks, that is, 
17% for Q. rubra and 2% for Q. petrea (Bogdziewicz et al., 2019).

3  | RESULTS

3.1 | Effects of acorn burial

Acorn burial enhanced seedling establishment in both species, 
although it was less beneficial for Q  petraea than for Q.  rubra 
(Figure 1). In Q. petraea, when rodents had access, acorn burial in-
creased establishment probability two‐fold (open cages, surface vs. 
buried acorns: 18% vs. 39%). This effect was considerably weaker 
when rodents were excluded (closed cages, 57% for acorns on the 
surface vs. 65% for buried acorns; rodent exclusion × burial interac-
tion in Table 1a, Figure 1). Similarly, burial increased establishment 
probability almost three‐fold in Q. rubra (open cages: 25% vs. 71%, 
Figure 1). This effect was weaker when rodents were excluded 
(50% vs. 73%; rodent exclusion × burial interaction in Table 1b). The 
finding that the difference between seedling establishment from 
buried and surface acorns was larger in the rodent access treat-
ment than in the rodent exclusion treatment indicates that burial 
enhanced establishment mainly through reducing acorn removal.

3.2 | Pilferage rates

Pilferage rates were higher in Q. petraea than in Q. rubra. In Q. pet-
raea, seedling establishment from buried acorns was 1.5 times higher 
when rodents were excluded (39% in open vs. 65% in closed cages). 
In Q. rubra, burial provided almost complete protection from pilfer-
age (open vs. closed cages: 71% vs. 73%). Note that the percent-
age estimates are the model intercepts and decreased with distance 
from the tree in some treatments (see below).

3.3 | Effects of transportation

We did not detect any transportation‐related benefits of seed disper-
sal and the oak species did not differ in this regard. In fact, seedling 

(3)pC=pcached× (1−peatenbycacheowner)× (1−ppilfered)

p̃C=
eS

eC

pcached× (1−peatenbycacheowner)× (1−ppilfered)=
eS

eC

(4)p̃CO=pcached× (1−peatenbycacheowner)=
eS

eC(1−ppilfered)

F I G U R E  1  Probability of seedling establishment of Quercus 
petraea and Quercus rubra in closed (rodent access excluded), and 
open (rodent access allowed) cages. ‘Sowed’ indicates acorns buried 
1–2 cm in the soil, while ‘surface’ indicates acorns placed on soil 
surface and covered with leaves to mimic autumn leaf fall. Whiskers 
indicate standard errors



     |  5Journal of EcologyBOGDZIEWICZ et al.

establishment probability decreased with distance from the focal tree 
(Table 1, Figures 2 and 3). This phenomenon was caused by an increase in 
acorn removal, as we detected distance‐related decrease in seedling es-
tablishment only in open cages. In Q. petraea, increased removal was ap-
parent only when acorns were sown on the surface (Table 1a, Figure 2). 
Pilferage of buried acorns did not differ with distance from the tree in 
this species (Figure 2). In Q. rubra, this effect occurred both for acorns 
that were buried and those that were left on the surface (Figure 3).

3.4 | Combining the effects to estimate the 
net outcome

Estimated p̃CO values (the minimum beneficial proportion of seeds 
buried and uneaten by cache owners, i.e. those taking into account 
loses due to cache pilferage) equalled 1.21 (95% CI: 0.86–1.79) 
for Q. petraea (both near and far from the tree), and 0.69 (95% CI: 
0.46–0.97) in Q. rubra near, and 1.24 (95% CI: 0.77–1.99) in Q. rubra 

Fixed effect Estimate SE z p

(A) Sessile oak Quercus petraea

Intercept (rodent access allowed, 
burial: surface)

−1.49 0.35 −4.23 <.001

Rodents excluded 1.77 0.33 5.31 <.001

Burial: cached 1.04 0.33 3.10 .001

Distance −0.06 0.02 −2.16 .03

Rodents excluded × Burial: cached −0.67 0.31 −2.19 .03

Rodent excluded × Distance 0.04 0.02 1.82 .07

Burial: cached × Distance 0.04 0.02 2.03 .04

(B) Northern red oak Quercus rubra

Intercept (rodent access allowed, 
burial: surface)

−1.06 0.39 −2.71 .006

Rodents excluded 1.09 0.37 2.95 .003

Burial: cached 1.97 0.36 5.36 <.001

Distance −0.10 0.03 −3.75 <.001

Rodents excluded × Burial: cached −0.97 0.33 −2.94 .003

Rodent excluded × Distance 0.06 0.02 2.88 .004

Burial: cached × Distance 0.03 0.02 1.21 .22

Note: The marginal R2 of the model for Quercus petraea was 0.28 and the conditional value was 
0.34. For Q. rubra, the marginal R2 of the model was 0.33 and the conditional value was 0.38

TA B L E  1  Effects of burial, distance 
from the parent tree and rodent access on 
the seedling establishment probability of 
focal oaks

F I G U R E  2  Probability of seedling 
establishment of Quercus petraea as a 
function of distance from the mother tree. 
Open cages indicate rodent access and 
closed cages indicate rodent exclusion. 
Red lines indicate acorns buried in topsoil 
and blue lines indicate those placed on 
soil surface. The solid line indicates a 
relationship significantly different from 
0 and the dashed lines indicate a non‐
significant relationship. Shaded areas 
indicate 95% confidence intervals
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far from the tree (Figure 4). Note that the p̃CO value for Q. petraea 
does not differ with distance because the pilferage rates were dis-
tance‐independent (Figure 2a). These values are either impossible 
to reach (when they exceed 1) or would require almost all cached 
acorns to be never retrieved to approach the mutualism param-
eter space of the interaction (Figure 4). Thus, observed interac-
tions between scatterhoarders and oaks in our study system were 
antagonistic.

A fraction of pilfered acorns could be re‐cached rather than con-
sumed (Jansen et al., 2004; Perea, San Miguel, & Gil, 2011). If once 
a seed is pilfered its fate in terms whether it is eaten or re‐cached is 
similar to the fate of seeds collected for the first time (Jansen et al., 
2004), then the consequences of seed burial depend on the number 
of rounds of re‐caching (see Figure S1). Nonetheless, for the parame-
ters observed in our system, re‐caching of pilfered acorns would not 
affect the conclusion that scatterhoarders acted antagonistically in 
their interactions with oaks (Figure S1).

4  | DISCUSSION

Our study is the first to separate and directly quantify the two of the 
most important services provided to plants by their rodent partners: 
seed transportation away from parent plants and seed burial in top-
soil. Our results suggest that widely accepted distance‐dependent 
benefits of transportation can be smaller than expected. Moreover, 
they demonstrate that even relatively large improvements in seed-
ling establishment after seed burial do not necessarily outweigh 
the costs of seed predation. Finally, and most generally, our study 
illustrates a straightforward empirical approach that can be used to 
evaluate the ambiguous role of scatter‐hoarding granivores in plant 
recruitment.

This approach consists of quantifying the net outcome of an 
interaction through assembling different parameters piecewise 
with a simple mathematical model. This method, although used 

F I G U R E  3  Probability of seedling 
establishment of Quercus rubra as a 
function of distance from the mother tree. 
Symbols, lines and shading are the same 
as in Figure 2

F I G U R E  4  Classification of oak–granivore interactions based on 
the probability of caching and not retrieving seeds, and the ratio of 
seedling emergence from the ground to emergence from caches. 
The net effect of granivores is beneficial at any point above the 
dotted grey line and antagonistic at any point below it. The ‘far’ and 
‘near’ categories indicate the establishment ratio calculated based 
on the seedling establishment rate estimated at distances of 0 m 
(near) and 25 m (far). For Quercus petrea, the ratio components did 
not differ with the distance from the seed source tree (see Figure 
2). The values on y‐axis (proportion of acorns cached and not 
retrieved) are derived from another study conducted in the same 
forest (Bogdziewicz et al., 2019)
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here to a specific plant‐scatterhoarder dataset, is very general: in 
fact, it is analogous to building population models with separately 
measured vital rates (e.g. Caswell, 2001; Morris & Doak, 2002). 
Similarly, just like other ecological models, it is a simplification that 
can be made more realistic by adding additional information (see, 
e.g., Maron & Crone, 2006; Ehrlén, Morris, von Euler, & Dahlgren, 
2016 in a demographic context). Here we used data on probability 
of seedling recruitment with and without rodents (through rodent 
exclusion); near and far from adult conspecifics (through evaluat-
ing seedling establishment near and far from parent trees); with 
and without seed pilferage (through including fate of pilferage 
seeds into the model, and estimating the probability of pilferage). 
Possible future extensions of our seed‐scatterhoarder model in-
clude, for example, effects of temporal variability, comparisons of 
long‐term seedling survival near and far from the parent tree or 
effects of directed dispersal of seeds into particularly favourable 
microsites (see below).

Scatter‐hoarding rodents reduced recruitment of focal oak 
species during the period of our study. Acorn burial increased the 
likelihood of seedling establishment, but seedling establishment of 
unburied acorns in the absence of small mammal foraging was high 
for both species. Finally, burial benefits were too small to over-
ride the costs of seed predation (Zwolak & Crone, 2012). In fact, 
even if the probability of seedling establishment of buried acorns 
were 100%, the pCO value would be 0.57 for Q.  petraea and 0.50 
for Q. rubra. This level of survival of buried acorns appears unlikely, 
as reported values commonly range from 1% to 20% (Bogdziewicz, 
Crone, et al., 2017; Gómez, Puerta‐Pinero, & Schupp, 2008; Vander 
Wall & Joyner, 1998; Vander Wall, 2002; Wróbel & Zwolak, 2017; 
Xiao, Zhang, & Krebs, 2013). Therefore, while it is still best for an 
acorn to be buried and forgotten, presence of small mammals did not 
help recruitment of oaks in our system.

We note that the balance of benefits and costs in conditional 
mutualisms typically changes over time (Klinger & Rejmánek, 2010; 
Theimer, 2005; Zwolak et al., 2016) and our study was conducted 
during a relatively short time frame (1 year). It is possible that fluc-
tuating environmental conditions (e.g. years with droughts or severe 
winters) increase the benefits of acorn burial and shift the oak–ro-
dent relationship towards mutualism. This possibility is supported 
by previous studies that have reported higher benefits of burial in 
oaks (García, Bañuelos, & Houle, 2002; Kollmann & Schill, 1996; 
Sawaya, Goldberg, Steele, & Dalgleish, 2018; Xia, Tan, Turkington, 
Hu, & Zhou, 2016). Indeed, both oak species in our study exhibit 
mast years (Bogdziewicz, Szymkowiak, et al., 2017; Sork, Bramble, 
& Sexton, 1993), which, in turn, drive fluctuations in small mammal 
population abundance and may create satiation effects, both at the 
source tree and after acorn burial (Kelly, 1994; Xiao et al., 2013; 
Zwolak et al., 2016). Yet, the potential increase in cache survival 
caused by the satiation is unlikely to counterbalance the costs of 
seed predation, unless it is accompanied by environmental changes 
that increase the benefits of seed burial. Thus, an interesting venue 
for future studies would be to quantify temporal variation in oak–
scatterhoarder interactions.

The patterns of seedling establishment suggest that rodent for-
aging is a strong filter of oak spatial recruitment at our study site. 
When rodents were excluded, distance from the tree did not change 
the probability of seedling establishment in either species. However, 
when rodent foraging was allowed, the seedling establishment rate 
was highest near adult trees, indicating that locally dense seed shad-
ows may allow a higher proportion of undispersed seeds to survive 
and germinate. In addition, distance to adult trees influenced pilferage 
of buried acorns in a species‐specific manner. In Q. petraea, the pil-
ferage did not change with distance from the tree, while it decreased 
with distance in Q. rubra. This difference suggests that ambient seed 
density has a stronger effect on cache pilferage rates in Q. rubra than 
in Q. petraea (Gálvez et al., 2009). Because we did not measure seed 
shadows, however, this pattern might have resulted from other factors 
such as a larger crop size of Q. rubra at the time of our experiments.

Animal dispersers often provide several different services that 
are not of equal value for their partner plants, and the benefits pro-
vided by each are rarely separated. The few studies that have done so 
demonstrate how distinguishing between types of service can change 
the way we think about particular interactions. For example, birds that 
disperse chili peppers (Capsicum chacoense) remove pathogens from 
the dispersed seeds (condition‐related benefit) and transport seeds 
far from parent plants (distance‐related benefit). However, only gut 
passage enhances seed survival (Fricke et al., 2013). A similar situation 
was reported for Iberian pears (Pyrus bourgaeana), where pulp removal 
was more important than transportation distance for plant recruitment 
(Fedriani, Żywiec, & Delibes, 2012). By disentangling the role of burial 
(condition‐related benefit) from transportation (distance‐related ben-
efit) in oak–scatterhoarders interactions, our study demonstrated that 
acorn burial was the main benefit of this interaction, at least during 
the period of our study. The lack of transportation benefits is possi-
bly unsurprising because in locally common plant species, the benefits 
should disappear when the species become so common that their pred-
ator and pathogen communities become functionally uniform across 
the landscape (Fricke et al., 2013; Garzon‐Lopez et al., 2015; Janzen, 
1971; Schupp, 1992). This is likely the case in our system because Q. 
petrea and Q. rubra dominate forest stands. Our results suggest that 
the generally greater establishment of some species far from parent 
plants may be due to distance‐independent benefits of burial rather 
than distance‐dependence per se. In other words, intertwined burial 
and transportation may create a false‐positive effect of distance, while 
it is only burial that helps recruitment (as in our system). This calls for 
increased attention to condition‐dependent benefits of seed dispersal, 
which have been often overlooked as researchers focused on dispersal 
distance and final location of seeds (Fricke et al., 2013).

As a potential caveat, Janzen‐Connell effects are stronger at the 
seedling than seed‐to‐seedling stage (Comita et al., 2014), which 
means that benefits of seed transportation by rodents might appear 
at later stages of a plant's life cycle. However, several studies that 
evaluated distance‐dependent survival rates at the seedling stage 
in temperate oaks did not find such an effect (Comita et al., 2014; 
Reinhart, Johnson, & Clay, 2012). Furthermore, directed dispersal 
increases the likelihood of colonization of microhabitats that are 
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favourable for germination and establishment (Steele et al., 2013; 
Yi, Liu, Steele, Shen, & Liu, 2013). Although such effects are not 
reported for the oaks in this study, our experimental design could 
underestimate these effects and thus, benefits of acorn transporta-
tion by scatter‐hoarding rodents. Finally, although rodent dispersal 
distance is usually short, Apodemus mice can carry seeds >100 m 
(Perea et al., 2011) and tropical rodents can carry seeds even further 
(Jansen et al., 2012). We do not exclude the possibility that such rare 
dispersal events could be more beneficial for seedling establishment 
than the typical short‐distance dispersal evaluated here. This could 
be an interesting avenue for future research.

To conclude, we presented simple means by which the outcomes 
of conditional plant–scatterhoarder interactions can be classified. The 
strength of our approach lies in its versatility: it uses mathematics to 
combine different types of data and can be easily modified to incor-
porate new information when data on other parameters becomes 
accessible. Our empirical results demonstrated that certain common 
assumptions—that scatterhoarding by rodents invariably improves 
plant recruitment; that improved seedling establishment after seed 
burial is sufficient to make plant–scatterhoarder interactions mutualis-
tic; that transportation away from maternal plants is highly beneficial—
do not always hold and should be tested rather than taken for granted.
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